Analysis of Inductive WPT

Jan Kracek, Milos Mazanek
Czech Technical University in Prague
Outline

» Introduction
» Efficiency
» Power balance
» Input impedance
» Conclusion
Outline

» Introduction
» Efficiency
» Power balance
» Input impedance
» Conclusion
Introduction

Source
Transceiving coil
Receiving coil
Appliance
Transceiving coil
Receiving coil

Receiving coils
Transceiving coils
Appliance
Sources

Receiving coil
Appliance
Transceiving coils
General WPT Chain

Source -> FC -> MN -> CE
Side of source
Adaptor

Transmission medium

CE -> MN -> FC -> Appliance
Adaptor
Side of appliance
Circuit Model

a) Source + FC

Side of source

b) Appliance + FC

MN

CL

c) Appliance + FC

MN

CL

Side of appliance
Outline

» Introduction
» Efficiency
» Power balance
» Input impedance
» Conclusion
Efficiency Definition

» Main losses are caused by resistances of transceiving and receiving coils.

\[
\eta_l = \frac{P_L}{P_T} = \frac{P_L}{P_A + P_L + P_S}
\]
Efficiency Derivation (1)

\[
\eta_I = \frac{R_L X_K^2}{\left((R_A + R_L)^2 + (X_A + X_L)^2 \right) R_S + (R_A + R_L) X_K^2}
\]

\[X_A = \omega L_A, \quad X_S = \omega L_S, \quad X_K = \omega k_I \sqrt{L_A L_S}\]

\[
\frac{X_K}{\sqrt{X_A X_S}} = k_I, \quad \frac{X_A}{R_A} = Q_A, \quad \frac{X_L}{R_A} = -Q_A', \quad \frac{X_A}{R_L} = Q_L, \quad \frac{X_S}{R_S} = Q_S
\]

\[
\eta_I = \frac{k_I^2 Q_A Q_S}{Q_L} \left(1 + \frac{Q_A}{Q_L} \right)^2 + (Q_A - Q_A')^2 + k_I^2 Q_A Q_S \left(1 + \frac{Q_A}{Q_L} \right) \]
Efficiency Derivation (2)

\[\kappa = k_l \sqrt{Q_A Q_S}, \quad \rho = \frac{Q_A}{Q_L}, \quad \xi = Q_A - Q_A' \]

\[\eta_l = \frac{\kappa^2 \rho}{(1 + \rho)^2 + \xi^2 + \kappa^2 (1 + \rho)} \]

\[R, L, C, \omega, (X) \rightarrow k_l, Q_A, Q_A', Q_L, Q_S \rightarrow \kappa, \rho, \xi \rightarrow \]

\[\max (\eta_l (\rho, \xi)) \rightarrow \rho = \sqrt{1 + \kappa^2}, \quad \xi = 0 \rightarrow \]

\[\kappa, \rho, \xi \rightarrow k_l, Q_A, Q_A', Q_L, Q_S \rightarrow R, L, C, \omega, (X) \]
Maximal Efficiency, Optimal Conditions

\[R_L = \sqrt{R_A^2 + \omega^2 k_l^2 L_A L_S \frac{R_A}{R_S}} \]

\[X_L = -\omega L_A \]

\[\eta_i = \frac{(k_l Q)^2}{\left(1 + \sqrt{1+(k_l Q)^2}\right)^2} \]

\[Q = \sqrt{Q_A Q_S} \]
Maximal Efficiency

\[
\eta_1 = \frac{(k_Q)^2}{\left(1 + \sqrt{1 + (k_Q)^2}\right)^2}
\]
Max. eff., Opt. Con. – Dual Case

\[R_L + jX_L = \frac{R'_L X'_L^2}{R'_L^2 + X'_L^2} + j\frac{R'_L^2 X'_L}{R'_L^2 + X'_L^2} \]

\[R'_L = \sqrt{\frac{\omega^2 L_A^2}{R_A^2 + \omega^2 k^2 L_A L_S \frac{R_A}{R_S}}} + \sqrt{R_A^2 + \omega^2 k^2 L_A L_S \frac{R_A}{R_S}} \]

\[X'_L = -\omega L_A - \frac{R_A \omega L_A}{R_S} \]
Outline

» Introduction
» Efficiency
» Power balance
» Input impedance
» Conclusion
Maximal Appliance Power, Optimal Condition

\[\text{max}\left(P_L\left(X_M\right)\right) \]

\[X_M = -\omega L_S \]
Power Balance (1)

\[
R_L = \sqrt{R_A^2 + \omega^2 k^2 L_A L_S \frac{R_A}{R_S}}
\]

\[
X_L = -\omega L_A
\]

\[
X_M = -\omega L_S
\]
Power Balance (2)

\[P_A = \frac{(k_iQ)^2}{\left(1 + (k_iQ)^2 + \sqrt{1 + (k_iQ)^2}\right)^2} \left| \frac{U_s}{R_s} \right|^2 \]

\[P_L = \frac{(k_iQ)^2 \sqrt{1 + (k_iQ)^2}}{\left(1 + (k_iQ)^2 + \sqrt{1 + (k_iQ)^2}\right)^2} \left| \frac{U_s}{R_s} \right|^2 \]

\[P_S = \frac{\left(1 + \sqrt{1 + (k_iQ)^2}\right)^2}{\left(1 + (k_iQ)^2 + \sqrt{1 + (k_iQ)^2}\right)^2} \left| \frac{U_s}{R_s} \right|^2 \]
Power Balance (3)

\[p_A, p_L, p_S [-] \]

\[k_i Q [-] \]
Efficiency and Power Balance

![Graphs showing Efficiency and Power Balance](image-url)
Outline

» Introduction
» Efficiency
» Power balance
» Input impedance
» Conclusion
Input Impedance (1)

\[Z_s = \frac{U_S}{I_S} \]
Input Impedance (2)

\[
Z_S = \frac{U_S}{I_S} = R_S + \frac{(R_A + R_L)X_K^2}{(R_A + R_L)^2 + (X_A + X_L)^2} + \\
+ j\left(X_M + X_S - \frac{(X_A + X_L)X_K^2}{(R_A + R_L)^2 + (X_A + X_L)^2} \right)
\]

By optimal conditions for efficiency and appliance power:

\[
Z_S = R_S + \frac{\omega^2 k^2 L_A L_S}{R_A + \sqrt{R_A^2 + \omega^2 k^2 L_A L_S} \frac{R_A}{R_S}}
\]
Outline

» Introduction
» Efficiency
» Power balance
» Input impedance
» Conclusion
Conclusion

» The general circuit model for WPT by electromagnetic induction was shown.
» The efficiency was mentioned.
» The power balance in the terms of normalized powers was derived.
» The input impedance was presented.